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Differential Formulation of On-Surface
Measured Equation of Invariance
for 2-D Conducting Scatterings

Y. W. Liu, K. K. Mei, and K. N. Yung

Abstract—In this letter formulations of on-surface measured
equation of invariance (OSMEI) method for two-dimensional
(2-D) conducting scatterings are derived from scalar wave equa-
tions rather than integral equations. At the same time, the MEI
equations for TM and TE cases are proved to be same. As long
as one of the MEI equations of the above two cases is found,
the MEI equation of another case is automatically given. A great
advantage of the OSMEI method over the conventional boundary
integration or differential equation method is that the OSMEI
can solve conducting scattering problems efficiently. Examples of
conducting circular and rectangular cylinder scatterings for both
TM and TE case show that results of the OSMEI are in excellent
agreement with those of the method of moments (MoM).

I. INTRODUCTION

I N THE AREA of electromagnetic computations, a number
of fast computation methods have been proposed in recent

years. In the context of integral equations (IE), most of
the effort is focused on generating sparse rather than dense
matrices to accelerate the speed of solving the matrices. Most
notably, there are wavelet expansion [1], fast multipole method
[2], and impedance matrix localization [3], etc. Whereas, in the
context of differential equations (DE’s), most of the effort is
concentrated on moving the truncated boundary as close as
possible to the scatterer to reduce the number of unknowns.
The recently developed method of measured equation of
invariance (MEI) [4] has succeeded in the latter quite well.
Originally, the objective of MEI was to terminate the finite-
difference (FD) or finite-element (FE) mesh close to the
scatterer surface, but it is now merged into the area of integral
equations to generate the sparse matrix by using the reciprocity
theorem [5]. In [5], the integral equation generated MEI is on
surface, i.e., there is no FD or FE equation required, therefore
the number of unknowns is identical to that of the method of
moments (MoM). In this letter, we directly discretize scalar
wave equations to obtain formulations of on-surface measured
equation of invariance (OSMEI ). Furthermore, we prove that
both TM and TE cases have the same MEI formulation.
The MEI equation of the TM case can be used in the TE
case, and vice verse. A great advantage of the OSMEI over
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Fig. 1. Surface mesh of a perfect conducting scatterer for the OSMEI.

the conventional IE and DE methods is that the OSMEI
generates the least number of the unknowns and a cyclic
band sparse matrix. Since fewer number of the unknowns
saves computational memory and the sparse matrix accelerates
computational speed, the OSMEI is a truly fast computational
method. In order to demonstrate the validity of the OSMEI
method, scatterings of conducting circular and rectangular
cylinders for both TM and TE plane wave incidence cases are
chosen as examples in comparing with the results of MoM.
Excellent agreement between the results of the OSMEI and
MoM is reached.

II. OSMEI METHOD

For an easy understanding, let us consider a perfectly
conducting cylindrical scatterer, as shown in Fig. 1. This
cylinder is uniform along the axes and has an arbitrary cross
section described by a close contouron the - plane. The
exterior space region of the scatterer is denoted byThen,
the problem is to calculate the scattering field generated by a
plane wave illuminating on the scatterer at an arbitrary angle.
We further assume that such an incident plane wave can be
expressed by the scalar wave function or We start
to discretize the following scalar wave equations of scattered
fields:

(1)

where is normal to the surface andis tangential to the
surface. is for the TM case and for the TE case.
The second-order tangential partial differential in (1) can be
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Fig. 2. TM surface currents of the circular cylinder.

discretized directly as

(2)

The second-order normal partial differential in (1) can be
written as

(3)

In (3), we approximate of by using the linear
combination of the and nearby fields [6]. Substituting
(2) and (3) into (1), we get on-surface measured equation of
invariance as follows:

(4)

Equation (4) is called the MEI equations. The TM coefficients
and TE in (4) are

called as MEI coefficients. Only coefficients are
independent. By means of at least possible solutions
of and the coefficients and

can be numerically found.
For the TM case [7]

(5)

(6)

Fig. 3. TE surface currents of the circular cylinder.

and for the TE case [7]

(7)

(8)

where is the wavenumber, is angle frequency, is
permeability of free space, and is the intrinsic impedance
of the free space. is the TM electric current and

is the TE equivalent current. The
and are known as “metrons” and are usually taken as

(9)

where is the perimeter of the scatterer surfaceand is
the source position on the

Substituting (5)–(8) into (4), we easily prove that the MEI’s
equation for TM case is the same as the MEI’s equation for
TE case, i.e., and That is to say,
we need to find only one set of the MEI coefficients and

(either TM or TE). Using (4) and boundary conditions of
the conducting surface at each node, we finally generate the
following matrix equations:

for TM (10)

for TE (11)

where and are the cyclic band matrices with bandwidth
Vector and represent real incident wave on

the scatterer surface. Vector and stand for unknown
tangential magnetic field components.
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Fig. 4. TM surface currents of the rectangular cylinder.

III. N UMERICAL RESULTS

The first example is the scattering of a conducting circular
cylinder with diameter. In order to ensure calculation
accuracy, the ratio of wavelengthto discretized space step
is kept in A plane wave with the wavelength of 1 m
and the incident angle of is applied as the incident wave.
When node number in (4), Figs. 2 and 3 show that the
total surface currents of the OSMEI agree well to those of the
MoM for TM and TE cases, respectively.

The second example is the scattering of a rectangular
cylinder with length and width under the excitation
of an 0 incident plane wave with 1-m wavelength. When

Figs. 4 and 5 show that total surface currents of
the OSMEI agree well to those of the MoM for TM and TE
cases, respectively.

It should be noted that the MEI coefficients used in the TE
case are the same coefficients found in the TM case.

IV. CONCLUSION

The OSMEI method introduced in this letter is a fast compu-
tational method for perfectly conducting cylindrical scattering
problems. We hope that the interpolation and extrapolation

Fig. 5. TE surface currents of the rectangular cylinder.

technique for the MEI coefficients in the conventional MEI
method [8] can be directly used in the OSMEI method to
solve the problem of very electrically large object scatterings.
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